Intro to Computer programming worked at calculating digits of pi today. The actual algorithms aren’t too bad, but getting more than the standard number of digits from a double is a bit trickier. Here’s a program that calculates pi using:
Bailey–Borwein–Plouffe formula
Bellard’s formula
and
Chudnovsky algorithm
Holy smokes is Chudnovsky algorithm’s fast!
Plouff Bellard Chudnovsky Iteration number 1 3.133333333333333333333333 3.141765873015873015873017 3.141592653589734207668453 Iteration number 2 3.141422466422466422466422 3.141592571868390306374053 3.141592653589793238462642 Iteration number 3 3.141587390346581523052111 3.141592653642050769944284 3.141592653589793238462642 Iteration number 4 3.141592457567435381837004 3.141592653589755368080514 3.141592653589793238462642 Iteration number 5 3.141592645460336319557021 3.141592653589793267843377 3.141592653589793238462642 Iteration number 6 3.141592653228087534734378 3.141592653589793238438852 3.141592653589793238462642 Iteration number 7 3.141592653572880827785241 3.141592653589793238462664 3.141592653589793238462642 Iteration number 8 3.141592653588972704940778 3.141592653589793238462644 3.141592653589793238462642 Iteration number 9 3.141592653589752275236178 3.141592653589793238462644 3.141592653589793238462642 Iteration number 10 3.141592653589791146388777 3.141592653589793238462644 3.141592653589793238462642 Iteration number 11 3.141592653589793129614171 3.141592653589793238462644 3.141592653589793238462642 Iteration number 12 3.141592653589793232711293 3.141592653589793238462644 3.141592653589793238462642 Iteration number 13 3.141592653589793238154767 3.141592653589793238462644 3.141592653589793238462642 Iteration number 14 3.141592653589793238445978 3.141592653589793238462644 3.141592653589793238462642 Iteration number 15 3.141592653589793238461733 3.141592653589793238462644 3.141592653589793238462642 Iteration number 16 3.141592653589793238462594 3.141592653589793238462644 3.141592653589793238462642 Iteration number 17 3.141592653589793238462641 3.141592653589793238462644 3.141592653589793238462642 Iteration number 18 3.141592653589793238462644 3.141592653589793238462644 3.141592653589793238462642 Iteration number 19 3.141592653589793238462644 3.141592653589793238462644 3.141592653589793238462642
Source code (Python)
from decimal import * #Sets decimal to 25 digits of precision getcontext().prec = 25 def factorial(n): if n<1: return 1 else: return n * factorial(n-1) def plouffBig(n): #http://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula pi = Decimal(0) k = 0 while k < n: pi += (Decimal(1)/(16**k))*((Decimal(4)/(8*k+1))-(Decimal(2)/(8*k+4))-(Decimal(1)/(8*k+5))-(Decimal(1)/(8*k+6))) k += 1 return pi def bellardBig(n): #http://en.wikipedia.org/wiki/Bellard%27s_formula pi = Decimal(0) k = 0 while k < n: pi += (Decimal(-1)**k/(1024**k))*( Decimal(256)/(10*k+1) + Decimal(1)/(10*k+9) - Decimal(64)/(10*k+3) - Decimal(32)/(4*k+1) - Decimal(4)/(10*k+5) - Decimal(4)/(10*k+7) -Decimal(1)/(4*k+3)) k += 1 pi = pi * 1/(2**6) return pi def chudnovskyBig(n): #http://en.wikipedia.org/wiki/Chudnovsky_algorithm pi = Decimal(0) k = 0 while k < n: pi += (Decimal(-1)**k)*(Decimal(factorial(6*k))/((factorial(k)**3)*(factorial(3*k)))* (13591409+545140134*k)/(640320**(3*k))) k += 1 pi = pi * Decimal(10005).sqrt()/4270934400 pi = pi**(-1) return pi print "\t\t\t Plouff \t\t Bellard \t\t\t Chudnovsky" for i in xrange(1,20): print "Iteration number ",i, " ", plouffBig(i), " " , bellardBig(i)," ", chudnovskyBig(i)
Pingback: Using the arctan Power Series to Calculate Pi | A Recursive Process
Pingback: Pi Day Snow Day! | Maryland Math Madness