Original on *How to Fix Our Math Education* article is found here.

Some great responses were mailed in.

Sol Garfunkel and David Mumford are right to observe that the everyday usefulness of our high school math curriculum leaves much to be desired. But since when did practicality become the only goal of our educational system?

Should English classes dispense with classic literature in favor of company annual reports? Should music and art be jettisoned to make way for classes in accounting and tax?

DANIEL ALTERBAUM

New Haven…

Examples of applied mathematics are critical, but to gear education toward any outcome is coercive and damaging. Instead, teachers should aim to give children all the tools they need to apply mathematics, and knowledge in general, in the way they choose.

JESS COLEMAN

New York…

Just as we teach students the beauty of poetry, we should teach students the beauty of mathematics — a beauty that does not depend on calculating a gear ratio or estimating a marginal profit.

ANDREW M. H. ALEXANDER

Oakland, Calif.…

You do not study mathematics because it helps you build a bridge. You study mathematics because it is the poetry of the universe. Its beauty transcends

merethings.

JONATHAN DAVID FARLEY

Orono, Me.

Some important thoughts to keep in mind for the upcoming school year.

All great sentiments–thanks for sharing them, Dan.

For me, what this editorial misses is that, in terms content, there are already plenty of opportunities to infuse meaningful applications of math into the existing curriculum. And through group and individual projects, teachers can also work with students to create projects that are meaningful to them.

But in over-crowded classes with mile-wide, inch-deep curricula, top-down instructional models, and high-stakes tests waiting at the end, only those teachers willing to go way beyond the call-of-duty even have a chance of making that happen. And those teachers are likely to burn out because of it.

“Should English classes dispense with classic literature in favor of company annual reports? Should music and art be jettisoned to make way for classes in accounting and tax?”

Fun fact: We were given a curriculum from a college for “college readiness” in English to use with seniors. There is no fiction in the curriculum. Just so you know how that argument is going to hold up.

Love this conversation from the movie Sideways.

Wouldn’t the “beauty of mathematics” argument hold more water if we actually spent more time in the stuff that’s beautiful, as opposed to pushing kids wholesale towards calculus as fast as possible?

Not that calculus isn’t nice once you get there, but if the entire drive is nothing but pavement and traffic jams because we refuse to take the longer scenic route, it’s hard to see how we expect the kids in the back to think that the road trip is all about seeing the surrounding beauty.

I mentioned the same thing in my blog. I think we as teachers should take the time and impress on the kids that we think there is beauty in this subject, that it is the only truly universal subject, that it is not just a bunch of recipes for different types of problems. On the other hand, the original article raises (at least in my mind) the question of whether math should be taught on two tracks – one more “academic”, more geared towards science and engineering and the other track more “applied”.

Pingback: Weekly Picks « Mathblogging.org — the Blog

I also did a review of this on my blog as well and although I agree with some of the ideas in the article, being an aspiring math teacher I feel as though by doing this it will take the fundamentals of mathematics.

Yes we should make topics relate-able and show that it is applicable to real life. But that can’t be the whole base of teaching, otherwise student will never learn the fundamentals of mathematics. When talking about math specifically, with out having a good foundations student will not understand the situation in which the mathematics apply.

First explain the topic, then use the idea of applying the topic to make sure that students understand the topic.

Sometimes the best path is to give the students an application of the problem that they don’t know how to do yet. In this way the problem (if interesting enough) can motivate the learning of the topic. If done right, I’d prefer this approach to teaching. The hard part is coming up with motivating applications.

-Dan